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ABSTRACT

General relationships are developed for obtaining a non-isothermal (dynamic) rate
equation from a knowledge of the isothermal kinetics of the svstem. Applications to
several important specific forms of the isothermal rate expressions are ¢given.

INTRODUCTION

Kinetic characterization is of fundamental importance for the processing
of reactive polvmeric svstems. The determination of the kinetic parameters
governing the curing reactions of thermosets is usually conducted by means
of a series of isothermal experiments using conventional methods and tech-
niques. Non-isothermal experiments have the attraction of being simpler and
more rapid for providing comparable useful information relating to thermo-
set cure. Although several papers have appeared in the literature pertaining
to the relationship between isothermal and non-isothermal cure Kkinetics
[1—5], no general correlation or procedure is available for obtaining the non-
isothermal (dynamic) rate expression from the isothermal rate equation,
particularly for cases where the isothermal rate equation may be of very
general form.

Following the publication of an article by MacCallum and Tanner [6], an
extensive discussion appeared in the literature pertaining to the relationship
hetween isothermal and non-isothermal kinetics. MacCallum and Tanner [6]
suggested that the procedure for the development of a non-isothermal rate
expression involving the inherent assumption that the isothermal rate is equi-
valent to the dynamic or temperature varying rate, was incorrect. They main-
tained that under non-isothermal conditions the dvnamic rate of fractional
conversion, «(t, T), is given as
da (Do (Do

= (00) +e(05) (1)
dt at’l aT7,
where (da/0t), is the isothermal rate and § = dT/dt is the heating rate. Simi-
lar arguments have been made by Prime [4.5] in his studies of the dynamic
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cure of thermosetting polymers. Although several studies [4—7] have
claimed that the isothermal reaction rate must be expressed as (3« /0 ¢) 4, a num-
ber of investigators [8—10] have questioned the validity of egn. (1), particu-
larly the physical meaning of the partial derivative (0a/0T);.

Hill [8] maintained that the partial derivative (8« /0T); is effectively zero
based on an argument that when time is fixed the number and position of
particles or reactive species is also fixed. MacCallum [11] refuted this notion
by considering the analogy where the reaction volume is changed by the
addition of an inert diluent at some constant rate. He argued that the
temperature, T, and the partial derivative (0« /0 T), are analogous to the reac-
tant volume, V,and the partial derivative (da/2 V);. MacCallum concluded
that the term (0a/0T), must therefore exist. Sestak and Kratochvil [12,13]
have reviewed this problem in terms of rational thermodynamics and consti-
tutive equations. They argued that eqn. (1) is a direct consequence of a con-
stitutive equation of the form

a=a(t, T) _ (2)

They stated that both of the partial derivatives in eqgn. (1) are non-zero and
gave a physical interpretation for the differences between the isothermal and
non-isothermal kinetic expressions.

Non-isothermal characterization techniques are generally less time
consuming as compared to isothermal experimental studies, thereby making
them more attractive for routine industrial, quality control, or research
applications. However, it is evident from eqn. (1) that the non-isothermal
kinetic expression (§ # 0) is not equivalent to the isothermal rate expression
(8 = 0). The following sections describe the general relationships that can be
used to develop the non-isothermal rate equation from a knowledge of the
isothermal kinetics. Some important specific forms of the isothermal rate
expression are also discussed.

NON-ISOTHERMAL RATE EQUATIONS

Equation (2) expresses the fact that the fractional degree of conversion, «

is a function of both time and temperature. Therefore, the total differential
da is expressed as follows

da = (g?) dt + (ai;) ar (3)

T : t

Alternatively eqn. (3) may be expressed in the following form

lo _ (Da) (F)a) dT (4)

At oT'!, dt
Denoting the heating rate, d7/dt, as § and rearranging eqn. (4) vields

da (aa) |:1+ (aa/aT)tj!

— — )
dr \at/, (oafat)r ()
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General form of isothermal rate equation

The isothermal rate equation is given in general form as follows
B ..
(3}»)-1- = f(a, T) (6)

Integration of eqgn. (6) gives

~ da
~ = h(a, T) =1 + -
._/f( 7= e Ty =+ (T) (7)
However, initially at ¢t = 0, a = 0 and thus from eqn. (7)
h(0, T) = o(T) (8)
oh do
(aT) ar )

The partial derivative on the left-hand side of egn. (9) may also be expressed
as

oh ohy {d« af
(ﬁ), - (551)7 (5%)1 * (ﬁzw)a (10)
Combining eqns. (7), (9) and (10) yields
(3a/dT), _do [dh
(a&/’a‘t)—;' ar (ﬁ)a (11)

Substituting eqn. (11) into egn. (5) results in the following expression for
the dynamic rate equation

da ('aa) [ 'd¢ ’dh) )]

=1 _—— 1 + —_ (——-

ar \at/, B(dT AT/, (12)
All of the terms on the right-hand side of egn. (12) may be determined from
the isothermal rate equation. The difficulty in deriving these quantities is
dependent upon the complexity of the integral appearing in eqn. (7). A
rather general form of isothermal rate equation is expressed by the following
form

(?ﬁ) =(k; + koa™)(1 — )" (13)
ot/

where k, and k. are kinetic rate constants having an Arrhenius dependence
on temperature, and m, n are kinetic exponents. Equation (13) has been
found to give a realistic description of the isothermal kinetic behavior of
several thermosetting systems [14,15]. For the usual case where m and n
have non-integer values, the function h(a, T) may be evaluated by approxi-
mating the term (1 —a) " by means of an infinite series expansion [16].
Thus

Z} F(n +J) (——k )' i t1—i+1)ym (14)

h(a
= ' F(n) i=0 (kz)l+l ] + 1— (l + 1)77’2
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Equation (14) satisfies both the ratio test and the root test for convergence.
In this case, h(0, T) = o(T) = 0. Evaluating the derivative (d//07T), from eqn.
(14) and substituting into the dynamic rate expression given by eqn. (12)
yields

e,

T

[(n +]) ' (—lll) i(F, — E )—F‘ Qj+1—(i+1) 1

1 J m
( —EO REXED) x-Eo (k- V*I( RT? )] +1—(i+ 1)m)
(15)

where E, and £, are the activation energies associated with the kinetic rate
constants %, and k., respectively. In certain special cases m and n have
integer values and simple closed form analytical expressions may be derived
for the function h(«a, 7) and the dvhamic rate equation.

(iym=1.n=1

_ }‘-l +lxwﬂ —]
Ao, T) = o |In (! L )j (16)
in i,
. T 1 —
Q( ) /1] +}\'1 (11)
da da 4] [(R.E, + kyEs By + ke ako(E, — Eqy|
- 1+ : . ) ! . - =
dt ( ) L (i\.] + ]\.-\)RT- ‘( [’{'] + ]Lw ll (kl(l —Q))+ ( ,"l + }L'\Q )J]
(18)
(ym=1,n=2
1 k +l“a Ry + ks
h(a, TY=. - . {}Ul ' )+ }
Rle T = Ly “( 1—a ) 1—a (19)
L« ln By, +Fk, + ]\‘\
. T 1 i
oT) = (1, + k) (20)
di _ (é(}_‘ {71 . —;75-_"_—_- (C\(l‘lEl + l\.ﬂEL‘») (\ll."-(]_'l '_~ _:_)_
df 3t L (k, + R)'RT? 1—a L, + ko

i

L] +}\.10 /

I"I _L]\.:

RV LS PR — 2 — K> 1
L ka(Ey = 2E) — RIE; (Al(l o)

Isothermal rate cquatic n expressed as the product of two separable functions

In many kinetic studies the isotherma! reaction rate is expresced as the
product of two separable functions, name=ly, a function dependen. on tem-
perature, g/T), and a function dependent on the fractional degree of conver-
sion, f,(«). Thus
(2%) = e, 1) = fi(@)(T) (22)

ot !



Substituting eqn. (22) into eqn. (7) vields

1 lo /
M T = iy Tty clr(lg:)) Foh (23)
Rearranging eqn. (23) gives
hi(a) =g(T)t + O (T) (24)
where 0,(7) = ¢(T)o(T). Initially at ¢t = 0, ¢ = 0 and thus from eqn. (241)
h(0) = o(T) (25)
However, 71,(0) is a constant and therefore

Differentiating eqn. (23) with respect to temperature vields

By _ h(e)g(T) ¥))
=—- s = (AT 27
‘67") w1t 2 «(T) (=7)
where ¢ (T) denotes the derivative dg(T)/dT. Therefore eqn. (12) becomes
do e { & ( . do (1) }
BN e 1+ - ™+ " 2
dt (at) g(T) te () dT ) (28)

However, since do,/dT = 0, the non-isothermal kinetic rate equation simpli-
fies to

da (0«
dr ( a[_)z [1 + ut (In G(T))] (29)

If the reaction is governed by a single Arrhenius kinetic rate constant such
that

g(T)y =1l = Ae F/ET (30)
then
da da 1' ﬁtﬁ]
RARPER Il 1+
d¢ (.at )T L RT" (31)

For the case of a linear heating rate eqn. (31) reduces to the following form

da_(aa\, [1 E(T — Tn)}

dr  \at/, RT* 1

where T, is the initial temperature. For the case where g(7T) has the form
given by eqn. (30), eqn. (31) indicates that the ratio of the dynamic to the
isothermal rate is independent of the functional dependence on the degree of
conversion, f;(«). Equation (32) has also been derived and discussed by
Prime [4].

(32)
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CONCLUSIONS

For any reactive system, the non-isothermal (dynamic) rate equation may
be derived from a knowledge of the isothermal kinetic expression. The
derivation and form of the dynamic rate equation is simplified considerably
for the case where the isothermal kinetics are expressed as the product of
two separable functions. Under these circumstances, the ratio of the dy-
namic to the isothermal rate is a function of temperature, whereas in the
more general case this ratio is dependent on both the temperature and the
degree of conversion.
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