
TTIE RELt1TIONSHIP BETWEEN ISOTHER?rlAL AANT) 
SOY-ISOTHERkI_I\L KINETTCS FOR THER\IOSET 
C~-I~~R;~CTERIZ,~TIBN 

INTRODCCTION 

ICinet.ic characterization is of funclament.al importance for t.he processing 

of reactive polymeric systems. The determination of the kinetic rxxameters 
governing t.lie curing reactions of tliermosets is usually conduc*ted by me:~ns 
of a series of isothermal experiments usin, CT conventional methods and tech- 

niques_ Xon-isothermal experiments have the attraction of being simpler and 
more rapid for providing comparable useful information relating to thermo- 

set cure. ,Although several papers have appeared in the literature pertaining 
to the relationship between isothermal and non-isothermal cure kinetics 
[l--51, no general correlation or procedure is available for obtaining the non- 

isothermal (dynamic) rate expression from the isot.hermal rate equation, 
particularly for cases where the isothermal rate equation may be of very 

general form. 
Following the publication of an article by \IacCallum and Tanner [ 6 1 T an 

estensive discussion appeared in the literature pertaining to the relationship 

between isothermal and non-isothermal kinetics. AIacCallutn and Tanner [ 61 
suggested t.hat. t.he procedure for the development of a non-isothermal rate 

espression involving the inherent assumpt.ion that the isot.hermal rate is equi- 
valent to the dynamic or temperature varying rate, was incorrect. They main- 

bined that under non-isothermal conditions the dynamic rate of fractional 

conversion, Q ( t. T), is given as 

(1) 

where (a~~/2 t).,. is t.he isothermal rat.e and 6 = dT/dt is the heating rate. Simi- 
lar argumenk have been made by Prime [A.51 in his studies of the dynamic 
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cure of thermosetting polymers. Although several studies [4--71 have 
claimed that the isothermal reaction rate must be espressed as (da/a t)?-, a num- 
ber of investigators [S-IO] have questioned the validity of eyn. (I), particu- 
larly the physical meaning of the partial derivative (a~~/a T), . 

Ml1 [S] maintained that the partial derivative (aa/aT), is effectively zero 
based on an argument t.hat when time is fixed the number and position of 
particles or reactive species is also fised. MacCallum [ 111 refuted this notion 
by considering the analogy where the reaction volume is changed by t.he 
addition of an inert diluent at some constant rate_ He argued that the 
t.emperature, T, and the partial derivative (a&/a ZJt are analogous to the reac- 
tant volume, V, and t.he partial derivative (ac~/a V), . I?acCallum concluded 
that. the term (acx/aT), must therefore esist. Sestak and Kratochvil [ 12,131 
have reviewed t.his problem in terms of rational thermodynamics and consti- 
tutive equations. They argued that eqn. (1) is a direct consequence of a con- 
stitutive equation of the form 

& = cxtt. T) (2) 

They stated that, both of the partial derivatives in eqn. (1) are non-zero and 
gave a physical interpretation for the differences between t.he isothermal and 
non-isothermal kinetic espressions. 

Non-isothermal characterization techniques are generally less time 
consuming as compared to isot.hermal experimental studies, thereby making 
them more attractive for routine industrial, quality control, or research 
applications. However, it is evident from eqn. (1) that the non-isothermal 
kinetic expression (6 + 0) is not equivalent to the isothermal rate expression 
(fl= 0). The following sections describe the general relationships that can be 
used to develop t.he non-isothermal rate equation from a knowledge of the 
isothermal kinet.ics. Some important specific forms of the isothermal rate 
expression are also discussed. 

NON-ISOTHERlI:\L RXTE EQU_ATIONS 

Equation (2) expresses the fact that the fractional degree of conversion, c< 
is a function of both time and temperature. Therefore, t.he total differential 
da is expressed as follows 

,-Ilternntively eqn. (3) may be expressed in the following form 

Denoting the heating rate, dT/dt, as fl and rearranging eqn. (4) yields 

(4) 

Cict act ~__ = .-- 
dt ( ,[ eat 1 f 6 !_“e!T>, _ 

r 1 (aajat), 
(5) 



General form of isothermal rate equation 

The isothermal rate equation is given in general form as follows 

Integration af cqn. (6) gives 

- dn 

.’ I - = 11(a, T) = f + (s(T) 
f(a, T) 

However, initially at f = 0, o = 0 and thus from cqn. (7) 

h(0, T) = Q(T) (3) 

(9) 

The partial derivative on the left-hand side of eqn. (9) may also be espressed 
as 

Combining eqns. ( 7), (9) and (10) yields 

(aa//aT), _ dQ __ __. - - -.-_ - 
@a/at), dT 

(10) 

(11) 

Substituting eqn. (11) into eqn. (5) results in the following expression for 
the dynamic rate equation 

(12) 

All of the terms on the right-hand side of eqn. (12) may be determined from 
the isothermal rate equation _ The difficulty in deriving these quantities is 
dependent upon the complexity of the integral appearing in eqn. (7). A 
rather general form of isothermal rate equation is expressed by the following 
form 

aa 
i 1 at. T 

= (kl + k$m)(l -cxy (13) 

where k, and k2 are kinetic rate constants having an &rhenius dependence 
on temperature, and m, n are kinetic exponents_ Equation (13) has been 
found to give a realistic description of the isothermal kinetic behavior of 
several thermosetting systems [14,15]. For the usual case where m and n 
have non-integer values, the function h(cr, 7’) may be evaluated by approsi- 
mating the term (1 -a)-” by means of an infinite series expansion [ 161. 
Thus 

(14) 
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Equation (14) satisfies both the ratio test. and the root test for convergence. 
In this case, h(0, 2”) = o(r) = 0. Evaluating t.he derivat.ive (a/z/27’), from eqn. 
(14) and subst.ituting into the dynamic rate expression given by eqn. (12) 
yields 

da 

clr 

(15) 

where E, and -E, are the activation energies associated with the kinetic rate 
constants k , and k,, respectively. In certain special cases TTZ and IZ have 

integer values and simple closed form analyt.icaI expressions may be derived 

for the function J2(a, T) and the dynamic rate equation. 

(ij 172 = 1, 0 = 1 

(18) 

(ii) 172 = 1, i7 = 2 

Isothermal rate eqrtatic II espressed as the croducf of two separable functions 

In many kinetic studies the lsothcrma! reaction rate is espres.red as the 
product of two separable functions, namely, d funct.ion dependec:. on tem- 
perature, g/.7’), and a function dependen!; on the fractional degree of conver- 
sion, f,(a)_ Thus 

= f(cr, T) = f&)g(T) (22) 



Substituting cqn. ( 22) into cqn. (7) yields 

(23) 

Rearranging cqn. ( 23) gives 

/2,(Q) = g(T)t + Ql(T, (!&I) 

xvhclrtx d,(T) = g(T)Q(T). Initially at t = 0, o = 0 and thus from c’qn. (2-I) 

I7l(Oj = Q,(T) (35) 

However, J7, (0) is a constant and therefore 

do,(T) 
Q’(T) + 

dT 

However, since dQ,/dT = 0, the non-isothermal kinetic rate equation simpli- 

fies to 

If the reaction is governed by a single Arrhenius kinetic rate constant such 

that 

g(T) = 1: = Ae-“/““ 
(30) 

t.hen 

(31) 

For the case of a linear heating rate eqn. (31) reduces to the following form 

+E(T--0) 
-1 

RT’ .jT 
(32) 

where T,, is the initial temperature. For the case where g(T) has the form 

given by eqn. (30), eqn. (31) indicates that the ratio of the dynamic to the 

isothermal rate is independent of the functional dependence on the degree of 

conversion, f I(a). Equation (32) has also been derived and discussed by 

Prime [4]_ 



92 

CONCLUSIONS 

For any reactive system, the non-isothermal (dynamic) rate equation may 
be derived from a knowledge of the isothermal kinetic expression. The 
derivat.ion and form of the dynamic rate equation is simplified considerably 
for the case where the isothermal kinetics are espressed as the product of 
two separable functions. Under these circumstances, the ratio of the dy- 
namic to t,he isothermal rate is a function of t-emperature, whereas in the 
more general case this ratio is dependent on both the t.emperature and the 
degree of conversion. 
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